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SUMMARY 
An innovative idea for the solution of viscous incompressible flows, in which the equation for conservation 
of mass is satisfied at the element level, is termed the solenoidal finite element approach. The term 
‘solenoidal’ derives from the fact that the velocity components need to be solenoidal, i.e. to have zero 
divergence. The difficulty with this idea centres on the construction of a specialized element in which the 
velocity components are constrained to be solenoidal by the nature of their interpolation functions. If such 
an element can be constructed, then the pressure is suppressed from the prime solution. This has obvious 
attractions, although recourse to another novel idea is needed for its eventual retrieval. The validity of 
these ideas is demonstrated herein by the results for some classical benchmark problems. Where possible, 
comparisons are made with other results, both from other codes and from the literature. 
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INTRODUCTION 

In connection with finite element solutions to viscous incompressible flows, an idea which has 
received scant attention is the solenoidal approach. The attraction of this approach is the inherent 
satisfaction of the continuity constraint and the uncoupling of the pressure from the prime 
solution. Early reviews’.’ of finite element solution methods commented on the difficulty, if  not 
impossibility, of this approach. The author, nevertheless, was attracted by the novelty of the 
idea and, after considerable effort, had success.3-s In the process it was demonstrated how the 
three main primitive variable approaches (solenoidal, penalty function, Lagrange multiplier) are 
just different manifestations of the imposition of the continuity con~traint.~.’ 

Another approach which appears to possess the same attraction as the solenoidal approach 
centres on the introduction of the streamfunction. The drawback with this approach is a 
restriction on the spatial dimensions and a problem with the specification of the resulting 
boundary conditions. 

The difficulty with the solenoidal approach centres on the construction of an admissible 
element, one which exhibits zero divergence. To date, such elements have proved somewhat 
elusive. Several elements6-’ which purport to be solenoidal are in fact not inherently solenoidal, 
i.e. do not exhibit zero divergence as entities by themselves. These elements tend to have 
discontinuous pressure and thus the equations associated with the continuity constraint for each 
element are independent of the remainder of the elements, so that these equations can be 
condensed into the interpolation functions for the velocity components. Another example’ 
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achieves the desired effect only in conjunction with neighbouring elements. The element which 
is discussed in this paper, on the other hand, is a development of the first genuine solenoidal 
e l e ~ ~ ~ e n t . ~ . ~ .  O 

Also, this paper presents, for the first time for the solenoidal approach, a viable means for 
the retrieval of the pressure. 

INTEGRAL FORMULATION 

Consider the steady plane laminar flow of an incompressible Newtonian fluid whose viscosity 
is constant. The governing equations for this case take the form 

(1) u, + uy = 0, 

1 2  
- v u - p ,  = uu, + UU,, 
Re 

1 
Re 

v2v - p y  = uu, + UU,, 
where p is the pressure with respect to some datum, u is the velocity component in the x-direction 
and u is the velocity component in the y-direction, all of which have been normalized, in doing 
so introducing the Reynolds number Re. 

The finite element method operates, not on the differential equations, but on an integral 
formulation. Such a formulation can be obtained from an inner product with the arbitrary 
variations 6 p ,  6u and Su so that 

+ jA  6u( b, V2u - p ,  - uu, - uu, dA + Su - V2u - p y  - uu, - uu, ) J A  (je 
where A is the integration domain. With the utilization of Green’s theorem this becomes 

A ( S U , ~ ,  + SU,U,  + SU,U,  + SU,U,) d A  + [ S U ( U U ,  + UU,) + SV(uu, + UU,)] dA I 
= [S(u, + u,)p + Sp(u, + u,)] dA + 6u - u, - a p  + 6 u  u, - f l p  ds, (4) J’,[ ( b e  ) ( d e  >I 

where a and fl are the direction cosines for the normal n to the boundary s. 
Although often not formulated as such, the main primitive variable approaches all follow this 

path. However, the solenoidal approach then takes the radical step which recognizes the 
advantage to be gained from the imposition at the element level of velocity components with 
zero divergence. If this can be achieved, then 

/ A  (6u,u, + S U , ~ ,  + Su,u, + 6u,u,) dA + [Su(uu, + uu,) + Sv(uu, + uv,)] dA s. 
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whereupon the pressure is eliminated from the prime solution. Note, however, that equation ( 5 )  
is dependent on the satisfaction, not of the solenoidal constraint ( l ) ,  but of the weaker statement 

S JA p(u, + uy) dA = 0. 

SOLENOIDAL ELEMENT 

As already mentioned, the difficulty with the solenoidal approach centres on the construction 
of an element for the velocity components. A triangular element is chosen, in part, to facilitate 
isotropic polynomial expansions. Complete quartic expansions, each of 15 terms, are selected 
to provide a number of degrees of freedom in excess of that needed to be conforming with which 
to impose the desired constraint. Although equation ( 5 )  indicates that a Lagrange element is 
permissible, higher-order nodal parameters are included to reduce the problem dimensions and 
hence the storage requirements. 

As it happens, it is not possible to construct a conforming element which is pointwise 
solenoidal, i.e. one which satisfies equation (1) at all points in the element. A compromise, then, 
is to impose the constraint on the average over the element such that 

This is achieved through the use of the Gauss points for a cubic polynomial, at each of the six 
of which equation (1) is satisfied. In this manner the constraint is imposed both in a collocation 
sense and in an integral sense. Equation (7) is, nonetheless, weaker than equation ( I )  but not as 
weak as equation (6). Precise satisfaction of equation (6), and thus equation (3, will occur only 
for constant pressure, or in the limit as the size of the element tends to zero. Such a relaxation 
is also employed in the cited 

The element configuration is that shown in Figure 1. However, clearly there is more to this 
element than is discussed here. Complete details of its construction will be presented in a future 
article. ’ ’ 

x s . v x , ~ . v y  

o % + v  = a  Y 
Figure 1. Solenoidal element for velocity components 
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VELOCITY COMPONENTS SOLUTION 

Let u and v denote the nodal parameters. Owing to the imposition of the solenoidal constraint, 
the local behaviour within each element is cross-coupled and therefore of the form 

[:3 = [NN" :::I[; 
where N"", N"', N'" and N" are the interpolation functions and Se is the assembly operator. 
Substitution into the integral formulation ( 5 )  leads to the relationship 

where K"", K"', K" and K" are the coefficient matrices and f and f* are the constant vectors. If 
the inertia terms are linearized by a complete first-order expansion, then 

1 
Kij = - 1 SeT [ (N;'N? + Nt'N? + q'N:j + N:'N;J) dA Se 

Re e A,. 

+ 1 SeT lS,, [Nu( b, U, - u p )  + Nvi'( ii U, - j p ) ]  ds. 
c 

Here an asterisk denotes the value from the previous iteration of the variable or its derivatives. 
The complete specification of the solution therefore requires 

and 

to be supplied as boundary conditions. In this manner equation (9) permits the velocity 
components to be determined solely from their own values at the previous iteration. 

PRESSURE SOLUTION 

Once the velocity components are known, an obvious course for the retrieval of the pressure is 
to combine the original governing equations to form 
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Application of the Bubnov-Galerkin method then requires either the pressure or its normal 
gradient to be specified around the entire boundary. 

In most cases knowledge of the pressure is restricted to a lone datum value. On the rest of 
the boundary the normal gradient must come from equation (2). Now a valid pressure solution 
must have 

- (ui + 2 0 , ~ ~  + u i )  dA = 

by reason of Gauss’s theorem, and so a Poisson equation procedure is not viable owing to the 
inability to obtain accurate estimates of all these terms, especially the highest-order derivatives 
and products of derivatives. Even smoothing of the numerical noise is not sufficiently effective. 
As a consequence, some alternative procedure is needed which reduces the highest-order 
derivatives and stipulates the ‘natural’ boundary conditions. 

A novel idea for the retrieval of the pressure which meets both these requirements starts with 
the boundary value problem posed, not by the entire domain, but by each element on its own. 
Furthermore, to avoid the need to patch neighbouring solutions, the solution is found in terms 
of the auxiliary pressure gradients P x  and P y  rather than the pressure itself. Employment of the 
Petrov-Galerkin method, where the weighting function W is not solenoidal, gives 

V’U - P X  - UU, - UU, 

whereupon the utilization of Green’s theorem yields 

(Wfu, + W:u,) dA + WT(Px + uu, + UU,) dA = 0, 

(Wzu, + W:u,) dA + WT(Py + UU, + UU,) dA = 0, 

if the weighting function can be made to vanish on the boundary of the element. This important 
operation therefore reduces the highest-order derivatives without the extra contribution of a 
boundary integral. 

Suppose the local behaviour in terms of the nodal parameters Px and Py is expressible as 

where N is the interpolation function. The auxiliary pressure 

(15) 

gradients are obtainable from 

(16) 
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K = lA6, WTN dA, 

provided K is square. 
The solenoidal element now serves a further purpose, not to eliminate the pressure, but to 

retrieve it. To be specific, its nodal parameters act as boundary conditions. Suppose W derives 
from a quartic polynomial defined by 15 nodal parameters. Known boundary values make all 
except three redundant. Therefore, if N derives from a linear polynomial, equation (16) is rendered 
solvable. The resulting system comprises two sets of three equations in three unknowns. 

With the pressure gradients now known over each element, the pressure over the entire domain 
can be determined from a least squares fit. In terms of the nodal parameter p, let the local 
behaviour within each element be representable as 

p = NPSePp, (18) 

where NP is the interpolation function and S e P  is the assembly operator. A continuous pressure 
over the domain is produced upon minimization of the least squares functional 

With respect to each nodal parameter, this occurs when 

Thus 

KPp = fp, 

in which 

demonstrate that there is no requirement for boundary conditions other than a lone datum 
value, which is consistent with the physics. 

So as not to waste valuable information, if the gradients vary linearly, then it is sensible to 
have the pressure vary quadratically. The resulting Lagrange pressure element therefore shares 
identical nodes with its solenoidal counterpart, as illustrated in Figure 2. 
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+ P  
Figure 2. Element for pressure 

SOLFEM CODE 

The described solution procedures form the basis of the SOLFEM code which, together with 
the velocity components and the pressure, provides solutions for the streamfunction, the vorticity, 
the shear stress and the velocity divergence. The code consists of a sequence of separate 
programmes which capitalizes on the independence of the solution variables to minimize storage 
requirements. A further advantage of this structure is that critical values are known in advance, 
so that exact array dimensions can be set before the execution of each programme. Solution is 
by means of a frontal scheme. The entire code is written from scratch, even to the extent of the 
graphics. 

The solenoidal element reduces the storage requirements, not only through the decoupling of 
the solution, but also owing to its first-derivative nodal parameters. For the 8800-element 
backward step problem which follows, the savings over a Lagrange element are these. At the 
expense of the increase in the number of degrees of freedom at the vertex nodes, the total number 
of nodes themselves is reduced from 44,721 to 17,961. The number of degrees of freedom which 
are active is reduced from 86,681 to 52,106. An indication of the efficiency of the code is a storage 
requirement from variable declarations of 1.77 Mbytes, even with double precision, for this 
problem. 

NUMERICAL EXPERIMENTS 

The validity of the ideas which are discussed in this paper and implemented in the SOLFEM 
code is tested by the application of the code to some classical benchmark problems. Convergence 
is considered to occur when the maximum change in nodal values of velocity components 
between successive iterations is less than 

Where possible, the results are compared with those from the literature and the commercial 
codes, FLUENT and FIDAP. The former is a finite volume code. The latter is a finite 
element code, either with a penalty function formulation or with a Lagrange multiplier 
formulation, the results from which are almost identical. At this early stage in the comparison 
exercise, for each code, a mesh which is at most slightly graded and certainly not optimum is 
employed. Therefore, any discrepancy between the results of the codes is more likely to be related 
to a deficiency in the resolution of the meshes than to a deficiency in the capabilities of the codes 
themselves. 
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Square cavity 

The flow in a square cavity, maintained by the driving action of a sliding lid, is a prototype 
for flows with recirculation. The problem is recognized as a standard test case and as a 
consequence possesses a rich literature, a relevant sample of which is References 12-14. 
When comparing results, however, care has to be exercised owing to the different treatments of 
the singularities at the corners near the lid. For the present case, the corners are considered to 
be part of the walls, not the lid, to prevent flow through the walls. 

Generally, the principal feature of the flow is a primary vortex. As well, there are secondary 
vortices of much lesser strength which rotate in the reverse sense. At low Reynolds numbers the 
core of the primary vortex is located about a quarter of the depth from the lid and equidistant 
from the walls. A pair of secondary vortices is located in the corners opposite the lid. With 
increasing Reynolds numbers the core of the primary vortex moves in the flow direction then 
towards the cavity centre. Both of the secondary vortices grow in size, although not at the same 
rate. At high Reynolds numbers the cavity reduces, in essence, to an inviscid recirculating eddy 
surrounded by a viscous boundary layer. A further secondary vortex appears on the wall near 
the start of the lid. 

Included here are results for various mesh densities and various Reynolds numbers. Meshes are 

c 

Figure 3. Velocity vectors for square cavity, Re = 100 

Figure 4. Vorticity 
u 

contours for square cavity, Re = I 0 0  (w = - 5 ,  -4, -3. - 2. 
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FLUENT 

I .  
\- 

FlDAP 

SOLFEM 
Figure 5 .  Pressure contours for square cavity, Re = 100 ( p  = -0.12. -0.06. -0.03. -0.015. -0.0075, -0.00375.0, 

0~00375,0~0075,0015,0~03,0~06.0~12) 

composed of almost uniform triangle pairs, with the mesh density m denoted by the number of 
these pairs along each side. Solutions for the velocity components at any Reynolds number are 
initiated from the solution at the previous Reynolds number. Convergence never takes more 
than five iterations. Sample solutions for rn = 41 and Re = 100 are presented in Figures 3-9. 
These encompass velocity vectors, vorticity contours, pressure contours, streamfunction con- 
tours, wall pressure coefficient profiles, skin friction coefficient profiles and centreline velocity 
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SOLFEM 

Figure 6. Streamfunction contours for square cavity, Re = 100 ($ = -0.1. -0.09, -0.08, -0-07, -0.06, -0.05, -0.04, 
-0.03, -0.02, -0.01.0) 

profiles. Figure 10 shows the movement of the vortex core with increasing Reynolds number for 
rn = 41, as does Table I. Table I1 details the characteristics of the vortex core with increasing 
mesh density for Re = 100. In all cases the solutions are in agreement with published 
r e ~ u l t s . l ~ - ' ~  Moreover, good agreement is obtained with the results from the commercial codes. 
These employ slightly graded meshes, FLUENT using 66 x 66 cells and FIDAP using 
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Figure 7. Wall pressure coefficient profiles for square cavity, Re = 100 (on horizontal axis, tick marks denote cavity 
corners, last division represents sliding lid) 
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Figure 8. Skin friction coefficient profiles for square cavity, Re = 100 (on horizontal axis, tick marks denote cavity 
corners, last division represents sliding lid) 

80 x 80 elements. Where agreement is not so good appears to be caused by different estimates 
of velocity gradients, mainly due to different-order interpolations which are not compensated 
for by the meshes in the region between the singularities. Finally, the improvement in the 
solution with the refinement of the mesh can be clearly seen from Table 11. Whether this 
convergence is to the true solution awaits further tests, since there is still some disagreement 
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Figure 9. Centreline velocity profiles for square cavity, Re = 100 

T 
0.75 1 

0 4 0 0  

0.50 
0.50 0.55 0.60 0.65 

X 
Figure 10. Location of vortex core for square cavity, m = 41 

between the results in the literature, more so with the properties at the vortex core than its 
actual location. 

Backward step 

Another established benchmark problem involves vortex formation, this time caused by a 
sudden change in the test section. This problem is the flow through a channel over a single 



ZERO-DIVERGENCE FINITE ELEMENT APPROACH 807 

Table 1. Location of vortex core for square cavity, m = 41 
~ 

Vortex core 

Re Code X Y 

0 FLUENT 
FlDAP 
SOLFEM 
Reference 13 

100 FLUENT 
FIDAP 
SOLFEM 
Reference 14 
Reference 13 

400 FLUENT 
FIDAP 
SOLFEM 
Reference 14 
Reference 13 

1000 FLUENT 
FlDAP 
SOLFEM 
Reference 14 
Reference 13 

1 500 FLUENT 
FIDAP 
SOLFEM 
Reference 13 

2000 FLUENT 
FIDAP 
SOLFEM 
Reference 13 

0500 
0.500 
0500 
0.50 
0.620 
0.6 1 8 
0.6 16 
0.6 17 
0.62 

0565 
0563 
0556 
0-555 
055 
0565 
0.531 
0528 
0531 
0-53 
0557 
0529 
0.525 
053 
0.543 
0521 
0522 
052 

0.765 
0.766 
0.763 
0-76 

0.748 
0731 
0.738 
0.734 
0.74 

0601 
0.618 
0.603 
0.606 
0.60 
0.557 
0.561 
0.556 
0.563 
0.56 
0557 
0.559 
0-544 
0-55 

0.543 
0.543 
0538 
0.54 

Table 11. Properties at vortex core for square cavity, Re = 100 
~ 

Vortex core properties 

m X Y w P J/ 

6 0.625 0.750 -3.31 
11 0'613 0'738 -3.01 
16 0617 0.742 -3.12 
21 0.619 0.738 -3.13 
31 0.617 0.738 -3.12 
41 0616 0738 -3.11 

Reference 14 0.617 0.734 -3.17 
Reference 13 0.62 0.74 -3.10 

- 0.0736 
- 0.0877 
- Om27 
-00941 
-00958 
- OW66 

-00953 
- 

- OW6 
-0101 
-0.102 
-0.102 
-0.102 
-0.103 
-0.103 
-0.104 
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Figure 1 I .  Velocity vectors up to six step heights behind backward step, Re = 100 

backward-facing step. The flow is characterized by separation near the upstream corner and 
reattachment on the downstream wall. This results in the formation of a vortex behind the face 
of the step. Of principal interest is the reattachment length, together with the vortex strength. 
With an increase in the Reynolds number, a smaller vortex of lesser strength forms downstream 
on the opposite wall. 

This problem has been the subject of considerable investigation, both experimental, to gain 
an understanding of the underlying physics, and computational, to test the efficacy of a 
mathematical model. Listed in the references are several of the more extensive investigations.' '-I7 
Unfortunately, the usefulness of the problem as a source of comparable data is hampered by 
the lack of a standard for its specification. This concerns the domain geometry and the boundary 
conditions, but extends even to the definition of the Reynolds number. 

For the present case, the expansion ratio is 2:3, while the channel is two step heights long 
before the step and 28 step heights long after the step. The solid walls exhibit no slip, the inlet 
has a parabolic velocity profile and the outlet has zero normal velocity gradients. An almost 
uniform mesh of 8800 elements is employed. Note that a count of triangular elements can appear 
inflated, since the elements tend to exist in pairs. The Reynolds number is based on the step 
height and the maximum velocity. Solutions for Re = 100 are provided in Figures 11-15. These 
comprise velocity vectors, vorticity contours, streamfunction contours, skin friction coefficient 
profiles and streamwise velocity profiles. Again, the solutions generally agree with those from 
the commercial codes. FLUENT uses 4192 graded cells. FIDAP uses 3920 graded elements. The 
agreement with physical experiments is not so close, owing in part to the variance in their 
results. ' * 

While the reattachment point is apparent from Figure 13, a precise estimate of its location 
from this figure is hindered by the fact that each code determines the streamfunction as a derived 
quantity, with a resulting increase in opportunity for error. In the region near the dividing 
streamline, especially near the reattachment point, gradients are small and so a small error in 
the streamfunction produces a large movement of the streamline. This characteristic is not 
unique, either to the present work or to the present problem. Obtaining an accurate depiction 
of the dividing streamline is a common concern. Another estimate of the location of the 

Figure 12. Vorticity contours up to 10 step heights behind backward step, Re = 100 (w = -2.4 -2.1. -1.8, -1.5. 
- 1.2, -0.9, -0.6. -0.3,0.0.3.06,0.9, 1.2. 1.5. 1.8) 



ZERO-DIVERGENCE FINITE ELEMENT APPROACH 

FLUENT 

FIDAP 

I I 

I -- I 
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SOLWM 
Figure 13. Streamfunction contours up to 10 step heights behind backward step, Re = 100 ($ = -002. -OOI,O,O~l67. 

0~333.0.5.0667,0~833.  I ,  1.167, 1.333) 

0.12 - i 

cf 

-0.03 - 
Figure 14. Skin friction coefficient profiles for backward step, Re = 100 (dixontinuous curves pertain to stepped 

wall) 
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0 2 4 6 8 10 

Figure 15. Streamwise velocity profiles up to eight step heights behind backward step, Re = I 0 0  

reattachment point can be obtained from Figure 15. However, a far better estimate can be 
obtained from Figure 14. Here the discontinuous curves represent the profiles along the wall 
with the step. The discontinuity is caused by the omission of the profile over the face of the 
step, owing to the conflict in the plot scales. The reattachment point occurs at the point of 
change of the sign of the skin friction coefficient. 

CONCLUSIONS 

A comparison of the SOLFEM results with those from other sources shows good agreement in 
most cases. At times it is even almost impossible to differentiate between results. Where the 
agreement is most pleasing is in the severe tests posed by the comparisons of the profiles, along 
with all plots of the derived quantities, especially the pressure, which is known for its sensitivity 
to any noise in the prime solution. 

At this point it is important to realize that the purpose of this whole exercise was to validate 
the SOLFEM code, not to conduct a definitive comparison of the performance of the various 
codes. For a start, the circumstances under which the exercise was conducted do not allow such 
a comparison. The different codes were run on different platforms, each with different resources. 
The meshes were not optimum ones. Any attempt, therefore, to make claims of superiority of one 
code over the others, based on these results alone, would be invalid. The exercise, however, is 
in its early stages and further work, in particular with graded meshes of similar resolution for all 
codes, is planned for the future. Higher Reynolds numbers are also proposed. 

As well as different platforms, there is the matter of different philosophies. The SOLFEM 
code is designed to minimize storage requirements, on the basis that a fast code is of little benefit 
if it cannot fit on the available platform. It could alternatively be designed to minimize processor 
time. Such a change in philosophy, and the subsequent change in performance, would have no 
connection with the inherent features of the solenoidal approach. Whatever their design 
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philosophies, similar statements are applicable to the other codes. Thus, given such diverse 
conditions, any attempt to compare the performance of the various codes with measures, either 
of storage requirements or of processor time, would be inappropriate. 

What can be claimed here, however, is that, given equivalent conditions, the SOLFEM code 
would be at least competitive with the others. Thus, what then are the main features of the 
solenoidal approach and in particular of the solenoidal element? 

The solenoidal approach decouples the solution so that the velocity components are 
determined solely from their own values at the previous iteration. Once the velocity components 
have been determined, the pressure can be retrieved when desired, like any other derived quantity. 
The advantage of this approach is that there is a reduction in the dimensions of the problem, 
with a consequent reduction in the storage requirements. 

The solenoidal element is conforming. It possesses first-derivative nodal parameters and this 
again reduces the problem dimensions. Owing to the imposition of an external constraint, it has 
cross-coupled local behaviour, which appears unique. Since a pointwise solenoidal element which 
is conforming is not possible, the constraint is relaxed to produce an elementwise solenoidal 
element. This means that the approach is exact only for constant pressure. Otherwise it becomes 
exact as the size of the element tends to zero, like any other valid approach. What is more, the 
same element which is responsible for the elimination of the pressure also plays a role in its 
eventual retrieval. 

In what are significant tests, the benchmark applications demonstrate the worth of the 
approach and of the element in particular. However, their use is applicable, not just to these 
test cases, but to any flow problem whose behaviour is governed by the stated differential 
equations. The sole requirement, as always, is that the domain be such as to permit the 
specification of the stated boundary conditions. 

The question that remains is the one about possible extensions beyond current applications. 
In theory, an extension in the spatial dimensions is possible, through the use of elements in the 
shape of triangular pyramids. The trick, once again, is to determine the appropriate polynomial. 
Apart from an increase in the complexity of the code, such an extension is achievable at no 
further cost than for any other approach. An extension to the temporal dimension is also possible. 
In fact, this has been achieved4 through the use of elements in the shape of triangular prisms. 
High-order time discretizations can be achieved by the overlapping of the time intervals. 
Excellent results have been obtained in limited trials against more standard time-stepping 
schemes. Finally, this whole concept is not restricted to viscous flows, but is applicable wherever 
there is a similar pairing in the governing equations of a pressure-like term with a velocity-like 
divergence term. 
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APPENDIX: NOMENCLATURE 

A solution domain 
F constant vector for pressure 
P, P y  constant vectors for auxiliary pressure gradients 
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P, r 
I 
K 
KP 
K'", K"', K'", K" 
m 
n 
N 
N' 
N", Nu', N", N" 
P 
P 
px, PY 
h, PY 
Re 

se 
s e p  

u, v 
u, v 
W '  
x, Y 

S 

Greek letters 

constant vectors for velocity components 
least squares functional 
coefficient matrix for auxiliary pressure gradients 
coefficient matrix for pressure 
coefficient matrices for velocity components 
mesh density 
outward normal 
interpolation function for auxiliary pressure gradients 
interpolation function for pressure 
interpolation functions for velocity components 
pressure 
nodal parameter for pressure 
auxiliary pressure gradients 
nodal parameters for auxiliary pressure gradients 
Reynolds number 
domain boundary 
assembly operator for velocity components 
assembly operator for pressure 
velocity components 
nodal parameters for velocity components 
weighting function 
Cartesian co-ordinates 

direction cosines for outward normal 
streamfunction 
vorticit y 

REFERENCES 

1. S. Tuann and M. 0lson;Review of computing methods for recirculating flows', J .  Comput. fhys., 29.1-19 (1978). 
2. D. Norrie and G. de Vries, 'A  survey of the finite element applications in fluid mechanics', in R. Gallagher, 0. 

Zienkiewicz, J. Oden, M. Cecchi and C. Taylor (eds). Finite Elements in Fluid. Vol. 3. Wiley. Chichester, 1978. 
3. A. N. F. Mack, 'An uncoupled approach for primitive variable solutions to viscous incompressible flows', Proc. 3rd 

Int. Conf: on Finite Elements in Flow Problems, Banfi, 1980, Vol. I, pp. 121-131. 
4. A. N. F. Mack, 'A solenoidal approach to viscous flow simulation,' PhD Thesis, University of Sydney, 1983. 
5. A. N. F. Mack, 'A unification of finite element approaches for primitive variable solutions to viscous incompressible 

flows', in J. Noye and C. Fletcher (eds), Computational Techniques and Applications. North-Holland, Amsterdam, 

6 .  M. Fortin, 'Approximation des fonctions a divergence nulle par la methode des elements finis', froc. 3rd Int. Con$ 

7. D. F. Griffiths, 'The construction of approximately divergence-free finite elements', froc. 3rd Conj: on the 

8 .  R. Temam, 'Some finite element methods in fluid flow', Proc. 6th Int. Con/: on Numerical Method in Fluid Dynamics, 

9. X. Ye and C. Hall, 'The construction of an optimal weakly divergence-free macroelement'. Int. j. numer. methods 

10. A. N. F. Mack, 'A solenoidal element for inherent mass conservation', in W. L. Hogarth and B. J. Noye (eds). 

I I .  A. N. F. Mack, 'The construction of an element level zro-divergence finite element', in preparation. 
12. 0. R. Burggraf, 'Analytical and numerical studies of the structure of steady separated flows', J.  Fluid Mech., 24, 

1984. 

on Numerical Methods in Fluid Mechanics, Paris, 1972, pp. 99-103. 

Mathematics of Finite Elements und Applications. Uxbridge, 1978, pp. 237-245. 

Tbilisi, 1978, pp. 3455.  

eny., 36, 2245-2262 (1993). 

Computational Techniques and Applicutions. Hemisphere, New York, 1990. 

113-151 (1966). 



ZERO-DIVERGENCE FINITE ELEMENT APPROACH 813 

13. M. Olson and S. Tuann, 'New finite element results for the square cavity', Compuf. Fluids, 7. 123-135 (1979). 
14. U. Ghia. K. Ghia and C. Shin, 'High-Re solutions for incompressible flow using the Navier-Stokes equations and 

15. D. J. Atkins. S. J. Maskell and M. A. Patrick, 'Numerical prediction of separated flows', Inf. j .  numer. methods eny.. 

16. B. Armaly. F. Dunt. J. Pcreira and B. Schonung, 'Experimental and theoretical investigation of backward-facing 

17. K. Morgan, J. Periaux and F. Thomasset (eds), Nufes on Numerical Fluid Mechanics. Vol. 9. Analysis of Laminar 

18. W. Adams and P. Johnston, 'EITects of the separating shear layer on  the reattachment flow structure', €.up. Fluids, 

a multigrid method', J. Compuf. Phys., 48, 387-41 I (1982). 

15, 129-144 (1980). 

step flow', J. Fluid Mech.. In. 473496 (1983). 

Flun ouer a Backward Facing Srep. Vieweg, Braunschweig, 1984. 

6. 493-499 (1988). 




